An algebraic study of the notion of independence of frames
نویسنده
چکیده
In this paper we discuss the notion of independence of frames in the theory of evidence from an algebraic point of view, starting from an analogy with standard linear independence. Families of frames can be given several algebraic interpretations in terms of semi-modular lattices, matroids, and geometric lattices. Each of those structures are endowed with a particular (extended) independence relation, which we prove to be distinct albeit related to independence of frames.
منابع مشابه
The notion of independence in the theory of evidence: An algebraic study
In this paper we discuss the nature of independence of sources in the theory of evidence from an algebraic point of view, starting from an analogy with projective geometries. Independence in Dempster’s rule is equivalent to independence of frames as Boolean algebras. Collection of frames, in turn, can be given several algebraic interpretations in terms of semimodular lattices, matroids, and geo...
متن کاملUniformities and covering properties for partial frames (II)
This paper is a continuation of [Uniformities and covering properties for partial frames (I)], in which we make use of the notion of a partial frame, which is a meet-semilattice in which certain designated subsets are required to have joins, and finite meets distribute over these. After presenting there our axiomatization of partial frames, which we call $sels$-frames, we added structure, in th...
متن کاملUniformities and covering properties for partial frames (I)
Partial frames provide a rich context in which to do pointfree structured and unstructured topology. A small collection of axioms of an elementary nature allows one to do much traditional pointfree topology, both on the level of frames or locales, and that of uniform or metric frames. These axioms are sufficiently general to include as examples bounded distributive...
متن کاملALGEBRAIC INDEPENDENCE OF CERTAIN FORMAL POWER SERIES (I)
We give a proof of the generalisation of Mendes-France and Van der Poorten's recent result over an arbitrary field of positive characteristic and then by extending a result of Carlitz, we shall introduce a class of algebraically independent series.
متن کاملAlgebraic distance in algebraic cone metric spaces and its properties
In this paper, we prove some properties of algebraic cone metric spaces and introduce the notion of algebraic distance in an algebraic cone metric space. As an application, we obtain some famous fixed point results in the framework of this algebraic distance.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009